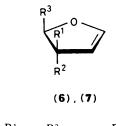
A New, Zinc-promoted Synthesis of 1,4-(1,5)-Anhydro-2-deoxy-pent-(hex)-1-enitols (Furanoid and Pyranoid Glycals)

René Csuk, Alois Fürstner, Brigitte I. Glänzer, and Hans Weidmann*

Institute of Organic Chemistry, Technical University Graz, Stremayrgasse 16, A-8010 Graz, Austria

Activated zinc in tetrahydrofuran efficiently converts derivatives of furanosyl and pyranosyl halides into glycals.

Glycals, 1,4-(1,5)-anhydro-2-deoxy-pent-(hex)-1-enitols,¹ are valuable intermediates in carbohydrate and other areas of natural product chemistry.²


Inasmuch as the original synthesis of glycals³ is specifically confined to reactions of 2-O-acyl glycopyranosyl halides with zinc in acetic acid, conditions generally incompatible with glycofuranosyl halides,⁴ this method only allows pyranoid glycals to be prepared. Since all attempts to change to aprotic solvents, employing Zn, Mg, or Zn/Cu⁵ to expand the scope of this glycal synthesis, were also hitherto unsuccessful, more appropriate methods were called for.

Disregarding special approaches,⁶⁻⁸ the most useful now at

	R1	R ²	R ³	R⁴	R ⁵
(1)	OAc	Н	Н	OAc	CH ₂ OAc
(2)	OAc	н	OAc	Н	CH ₂ OAc
(3)	OAc	Н	Н	OAc	Н
(4)	Н	OAc	Н	OAc	Н
(5)	OAc	Н	н	Х	CH ₂ OAc

X = 2,3,4,6-tetra-*O*-acetyl- β -D-glycopyranosyl

$$\begin{array}{cccc} R^{1} & R^{2} & R^{3} \\ \hline (6) & OH & H & -CHOCMe_{2}OCH_{2} \\ \hline (7) & H & OH & -CH_{2}OCH_{2}OMe \\ \end{array}$$

hand consists in either treatment with sodium iodide of pentofuranosyl bromides, bearing good leaving groups at C-2,⁹ or reactions of 2,3-*O*-isopropylidene glycosyl halides with sodium¹⁰ or sodium naphthalenide⁵ or, in the latest version, with lithium in ammonia.^{11,12} Except for the first of these, none can provide *O*-acylated glycals and invariably either 3-*O*-unprotected^{11,12} or 3-*O*-glycosylated products are formed.¹⁰

An extension of the Fischer–Zach glycal synthesis³ to aprotic conditions as well as to acetal-protected glycosyl halides has now been accomplished. Thus, when 2,3-Oisopropylidene glycofuranosyl halides or per-O-acetyl glycopyranosyl halides were subjected to zinc/silver– graphite¹³ in tetrahydrofuran, the glycals (1)–(7) were formed exclusively and in excellent yields (Table 1).† In all **Table 1.** Formation of the glycals (1)-(7).

Product	Temp./°C	Time/min	% Yield	Ref.ª
(1)ь	-20	10	95.6	15
(2) ^b	-20	10	87.3	15
(3) ^b	-20 to 25	20	91.9	15
(4) ^b	-20 to 25	20	90.1	15
(5) ^b	-20 to 25	180	83.1	15
(6)°	-20 to 30	180	81.0	12
(7) ^d	-20 to 30	180	86.4	5

^a All compounds gave satisfactory microanalytical and spectral data. ^b From the corresponding per-*O*-acetylated glycopyranosyl bromide. ^c From 2,3-*O*-isopropylidene-5-*O*-methoxymethyl-β-D-ribofuranosyl chloride. ^d From 2,3:5,6-di-*O*-isopropylidene-β-D-mannofuranosyl chloride.

cases investigated, pyranosyl halides eliminated faster than furanosyl halides.

It is of interest to note that Rieke-zinc,¹⁴ generally considered to be highly reactive, was found to be unsuitable for glycal formation under the conditions given in Table 1.

We gratefully acknowledge financial support by the Fonds zur Förderung der Wissenschaftlichen Forschung in Vienna.

Received, 7th April 1986; Com. 454

References

- 1 R. J. Ferrier, Adv. Carbohydr. Chem. Biochem., 1969, 24, 199.
- 2 T. D. Inch, *Tetrahedron*, 1984, **40**, 3161; S. Hanessian, 'Total Synthesis of Natural Products: The "Chiron" Approach,' Pergamon, Oxford, 1983.
- 3 E. Fischer and K. Zach, Sitz. ber. kgl. preuss. Akad. Wiss., 1913, 16, 311.
- 4 K. Bischofberger and R. H. Hall, Carbohydr. Res., 1976, 52, 223.
- 5 S. J. Eitelman, R. H. Hall, and A. Jordan, J. Chem. Soc., Perkin Trans. 1, 1978, 595.
- 6 K. Dax, A. P. Rauter, A. E. Stütz, and H. Weidmann, Liebigs Ann. Chem., 1981, 1768.
- 7 J. Thiem and H. Lüders, Liebigs Ann. Chem., 1985, 2151.
- 8 J.-M. Lancelin, L. Morin-Allory, and P. Sinaÿ, J. Chem. Soc., Chem. Commun., 1984, 355.
- 9 R. K. Ness and H. G. Fletcher, Jr., J. Org. Chem., 1963, 28, 435; M. Haga and R. K. Ness, *ibid.*, 1965, 30, 158.
- 10 S. J. Eitelman and A. Jordan, J. Chem. Soc., Chem. Commun., 1977, 552.
- 11 R. E. Ireland, C. S. Wilcox, and S. Thaisrivongs, J. Org. Chem., 1978, 43, 786.
- 12 R. E. Ireland, S. Thaisrivongs, N. Vanier, and C. S. Wilcox, J. Org. Chem., 1980, 45, 48.
- 13 R. Csuk, A. Fürstner, and H. Weidmann, J. Chem. Soc., Chem. Commun., 1986, 775.
- 14 R. D. Rieke, Top. Curr. Chem., 1975, 59, 1.
- 15 R. J. Ferrier, Adv. Carbohydr. Chem., 1965, 20, 69.

[†] Specifically, to a stirred suspension of zinc/silver-graphite¹³ (2.2 mmol) in tetrahydrofuran (THF; 30 ml) the glycosyl halide (2 mmol) THF (5 ml) was added at -20 °C and the temperature slowly increased (*cf.* Table 1). After completion of the reaction and filtration over Florisil, the solution was evaporated and the product purified by chromatography.